

When Are Time Standards Beneficial?

- Characteristics of industrial situations in which time standards would be beneficial
- Low productivity: significant opportunities for improvement
- Repeat orders: once the time standard is set for the first, it can be used for successive ones
- Long production runs: reduced average cost of work measurement
- Repetitive work cycles: work measurement can be justified more readily
- Short cycle times: requires less time to set standards

Work Systems and the Methods, Measurement, and Management of Work by Mikail P. Groover, ISBN 0-13-140650-7.62007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved

- Source of data: direct time study, PMTS, work sampling, historical data
- Effect of work variables should be included
 - Tables
 - Charts
 - Mathematical equations

Work Systems and the Methods, Measurement, and Management of Work by Mikail P. Groover, ISBN 0-13-140650-7. ©2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

by Mike P. Groover, ISBN 0-13-140650-7. 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Cycle Time Variations

- Once the method has been standardized, the actual time to perform the task is a variable because of:
 - Differences in worker performance
 - Mistakes, failures and errors
 - Variations in starting work units
 - Variations in hand and body motions
 - Extra elements not performed every cycle
 - Differences among workers
 - The learning curve phenomenon

rk Systems and the Methods, Measurement, and Management of Work by Mikall P. Groover, ISBN 0-13-140650-7.

· Service work: more difficult to define

Work Systems and the Methods, Measurement, and Management of Work by Mikell P. Groover, ISBN 0-13-140650-7. 62007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved

Accuracy in Work Measurement

- Accuracy is concerned with closeness to the true value
 - But what is the true value of a task time?
- Measurement is a procedure in which an unknown quantity is compared with a known standard
 - But the known standard in work measurement is the definition of standard performance used by the company
 - The standard is not based on time

Work Systems and the Methods, Measurement, and Management of Work by Mikel P. Groover, ISBN 0-13-140650-7. (2007 Peason Februation Jon: Unars Satellite River NJ. All rights reserved.

by Mikel P. Groover, ISBN 0-13-140650-7. 207 Pearson Education, Inc., Upper Saddle River, NJ. All rights rese

- Assists in the preparation of the documentation
 Methods descriptions
 - Reports

Work Systems and the Methods, Measurement, and Management of Work by Milkell P. Groover, ISBN 0-13-140650-7. ©2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved

Worker Performance

- Average (Standard) Worker ????
- Defined as the pace (tempo) or relative speed with which the worker does the task.
- As worker performance increases, cycle time decreases
- From the employer's viewpoint, it is desirable for worker performance to be high
- What is a reasonable performance/pace to expect from a worker in accomplishing a given task?

Allowances in Time Standards

- Normal time is adjusted by an allowance factor A_{pfd} to obtain the standard time
- Purpose of allowance factor is to compensate for lost time due to work interruptions and other reasons
- Standard time:

 $T_{std} = T_n(1 + A_{pfd})$ where pfd = personal time, fatigue, and delays

Personal time

- Rest room breaks, phone calls, water fountain stops, cigarette breaks (5% typical)
- For example: A larger value will be approporiate if the work environment is hot
- · Rest allowance to overcome fatigue due to work-related stresses and conditions (5% or more)- refer to Chapter 23
- For example: If the work is physiologically very demanding, then relaxation time should be allowed periodically for the body to recover (in this case use 20% allowance)

- Given: The normal time to perform the regular work cycle is 3.23 min. In addition, an irregular work element with a normal time = 1.25 min is performed every 5 cycles. The PFD allowance factor is 15%.
- Determine
- (a) the standard time
- (b) the number of work units produced during an 8-hr shift if the worker's pace is consistent with standard performance.

Work Systems and the Methods, Measurement, and Management of Wor by Mikal P. Groover, ISBN 0-13-140650-7. 2007 Peerson Education Inc. Inner Saddia River NI. All rights reserve

Case 2.a: Cycle Times with No Overlap Between Worker and Machine

- Worker elements and machine elements are sequential
- There is no overlap in work elements between the worker and the machine
 While worker is busy, machine is idle
 While machine is busy, worker is idle
- Worker's work elements are external
- Normal time for cycle

 $T_n = T_{nw} + T_{m_i}$ where

 T_{nw} = Normal time for the worker-controlled portion of the cycle time, min T_m = Machine cycle time (assumed to be constant)

by Mikel P. Groover, ISBN 0-13-140850-7. 62007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

9		Example 2.10: Internal vs external work elements in cycle time analysis			
a a	Seq.	Work Element Description	Worker Time (min)	Machine Time (min)	
-	1	Worker walks to tote pan containing raw stock	0.13	(idle)	
	2	Worker picks up raw workpart and transports to machine	0.23	(idle)	
	3	Worker loads part into machine and engages machine semiautomatic cycle	0.12	(idle)	
	4	Machine semiautomatic cycle	(idle)	0.75	
	5	Worker unloads finished part from machine	0.10	(idle)	
	6	Worker transports finished part and deposits into tote pan	0.15	(idle)	
	Total	7_=0.73+0.75=1.48 min	0.73	0.75	
		U Work Systema and the Methods, Measurement, and Management of Work by Maral P. Gacover, ISBN 0-13-44050-7. 62007 Pearson Education, Inc., Upper Saddle Rover, NJ. All rights reserved.			

Example 2.10: Internal vs external work elements in cycle time analysis

- The cycle time is reduced from 1.48 min to 0.97 min.
- % cycle time reduction=(CT_{current}-CT_{improved})/CT_{current} =(1.48-0.97)/1.48=%34
- R_{current}=1/1.48 min=0.68 units per min
- R_{improved}=1/0.97 min=1.03 units per min
- % increase in R=(R_{improved} R_{current})/R_{current}
 =(1.03-0.68)/0.68=%53
- %decrease in R=(R_{current} R_{improved})/R_{current} =(0.68-1.03)/0.68=-%53
 ¹⁰⁰ Systems and Relationships (and Boostoness et al. 6 AddRoll, 2007 Provide States), and a state of the AddRoll of States and Provide States), and a state of the AddRoll of States and Provide States (and a state of the AddRoll of States)

	Contingency Allowances		
5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
Problem area	Problems and examples		
Materials or parts	Starting materials or parts are out of specification, and extra time is needed to correct the nonconformance (e.g., oversized casting that requires an extra machining pass or slower feed rate).		
Process	Manufacturing process is not in statistical control (Section 10.2), and additional time is required to inspect every piece rather than inspect on a sampling basis.		
Equipment	Equipment is malfunctioning or breaking down more frequently than what is provided by the unavoidable delay factor, and additional time is needed to compensate the worker to make adjustments, lubricate the machine more frequently, or other extra task(s) not included in the standard time.		

<section-header><image><image><image><image><image><image><image><image><image>

- Learning allowances: for workers who are learning a new job, or new employees
- Worker would be reluctant to train others or to learn new jobs unless some form of compensation were provided to cover the losses because of training.
- If a wage incentive plan is not used, there is no reason to have policy allowances.

Work Systems and the Mathods, Measurement, and Management of Work by Mikail P. Groover, ISBN 0-13-140650-7. (22007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Example: Use of machine allowance in a wage incentive plan

Given: A wage incentive plan pays workers a daily wage at a rate of 15/hr multiplied by the number of standard hours accomplished during the shift. $T_{nw} = 1$ min, $T_m = 3$ min, $A_{pfd} = 15\%$. Workers' work elements are external.

Determine the standard time for

- *b*) A_m=30%. ☺
- c) What does a worker earn for the day under each A_m (policy!) if (s)he produces 115 parts a day?

Work Systems and the Mathods, Measurement, and Management of Work by Mikall P. Groover, ISBN 0-13-140650-7. 62007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

